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A B S T R A C T

Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by multiple cortical
regions including the primary (V1) and association (V2) visual, posterior parietal (PPC) and dorsolateral pre-
frontal (DLPFC) cortices. In these regions, parvalbumin (PV) or somatostatin (SST) GABA neurons are altered in
SZ as reflected in lower levels of activity-regulated transcripts. As PV and SST neurons receive excitatory inputs
from neighboring pyramidal neurons, we hypothesized that levels of activity-regulated transcripts are also lower
in pyramidal neurons in these regions. Thus, we quantified levels of four activity-regulated, pyramidal neuron-
selective transcripts, namely adenylate cyclase-activating polypeptide-1 (ADCYAP1), brain-derived neurotrophic
factor (BDNF), neuronal pentraxin-2 (NPTX2) and neuritin-1 (NRN1) mRNAs, in V1, V2, PPC and DLPFC from
unaffected comparison and SZ individuals. In SZ, BDNF and NPTX2 mRNA levels were lower across all four
regions, whereas ADCYAP1 and NRN1 mRNA levels were lower in V1 and V2. The regional pattern of deficits in
BDNF and NPTX2 mRNAs was similar to that in transcripts in PV and SST neurons in SZ. These findings suggest
that lower activity of pyramidal neurons expressing BDNF and/or NPTX2 mRNAs might contribute to alterations
in PV and SST neurons across the vsWM network in SZ.

Introduction

In schizophrenia (SZ), deficits in working memory (WM) have been
suggested to be central to impairments in a range of cognitive functions
(Silver et al., 2003; Barch and Ceaser, 2012) and thus key to one of the
most debilitating symptom domains in the illness (Kahn and Keefe,
2013). Visuospatial WM (vsWM), which is impaired in SZ (Park and
Holzman, 1992; Forbes et al., 2009; Matthews et al., 2014), depends on
information flow across multiple cortical regions including the primary
visual cortex (V1), association visual cortex (V2), posterior parietal
cortex (PPC) and dorsolateral prefrontal cortex (DLPFC) (Linden, 2007;

Christophel et al., 2017).
Information flow across these regions of the vsWM network is

mediated by the axonal projections of excitatory pyramidal neurons that
also provide excitatory inputs to local GABA neurons (Melchitzky and
Lewis, 2003; Jiang et al., 2015), which, in turn, shape the activity of
pyramidal neurons (Rao et al., 2000; Constantinidis et al., 2002). In each
of these regions, levels of transcripts expressed in the parvalbumin (PV)
or somatostatin (SST) subtypes of cortical GABA neurons were lower in
individuals with SZ compared with unaffected comparison (UC) in-
dividuals (Tsubomoto et al., 2019), suggesting that alterations in both
PV and SST neurons represent a shared feature across cortical regions of
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the vsWM network in SZ. Interestingly, some transcripts with lower
levels in PV and SST neurons (e.g., PV, SST and GAD67 mRNAs) from SZ
individuals are regulated by neuronal activity (Lau and Murthy, 2012;
Cohen et al., 2016; Ampofo et al., 2020). Given that both PV and SST
neurons receive direct excitatory inputs from neighboring pyramidal
neurons (Melchitzky and Lewis, 2003; Jiang et al., 2015; Campagnola
et al., 2022), we hypothesized that levels of activity-regulated tran-
scripts are also lower in pyramidal neurons in SZ across regions of the
vsWM network in a manner that is similar to the cross-regional alter-
ation pattern of activity-regulated transcripts in PV and SST neurons.

To test this hypothesis, we used quantitative polymerase chain re-
action (qPCR) to evaluate expression levels of activity-regulated, pyra-
midal neuron-selective transcripts in the total gray matter across four
regions of the cortical vsWM network from 20 matched pairs of UC and
SZ individuals. Specifically, we evaluated adenylate cyclase-activating
polypeptide-1 (ADCYAP1), brain-derived neurotrophic factor (BDNF),
neuronal pentraxin-2 (NPTX2) and neuritin-1 (NRN1) mRNAs. These
transcripts are likely to be particularly informative as they are selec-
tively expressed in pyramidal neurons in the human neocortex (Hodge
et al., 2019; Ma et al., 2022) in a neuronal activity-regulated manner
(Ataman et al., 2016; Mardinly et al., 2016; Hrvatin et al., 2018) and
their protein products regulate the development and maintenance of
synaptic connections, including those of GABA neurons (Kohara et al.,
2007; Chang et al., 2010; Fujino et al., 2011; Picard et al., 2014; Varo-
dayan et al., 2020; Martelle et al., 2021). Furthermore, a recent
single-cell, spatial transcriptome study in the monkey neocortex
demonstrated that these transcripts are expressed in different sets of
excitatory neuron subtypes (Chen et al., 2023).

In addition, to determine if the regional expression patterns observed
in total gray matter reflect those present in pyramidal neurons, we also
analyzed previously published RNA sequencing (RNAseq) data of pools of
layer 3 pyramidal neurons captured from V1, PPC and DLPFC of 39 UC
individuals (Enwright et al., 2022). Layer 3 pyramidal neurons appear to
have critical roles in WM because 1) across cortical regions of vsWM
network these neurons exhibit activities that represent specific informa-
tion during vsWM tasks (Goldman-Rakic, 1995; Chafee and
Goldman-Rakic, 1998; van Kerkoerle et al., 2017) and 2) these neurons,
through their corticocortical axonal projections (Jones, 1984; Lewis and
Gonzalez-Burgos, 2000), directly mediate information flow across cortical
regions of the vsWMnetwork (Felleman and Van Essen, 1991; Arion et al.,
2023). Furthermore, they are the major source of excitatory inputs to
neighboring PV and SST neurons via local axon collaterals (Melchitzky
and Lewis, 2003; Jiang et al., 2015; Campagnola et al., 2022).

Methods

2.1. Human individuals

Brain specimens (N = 40) were obtained, following consent from the

next of kin, during autopsies conducted at the Allegheny County
(Pittsburgh, PA; N = 37) or the Davidson County (Nashville, TN; N = 3)
Medical Examiner’s Office. An independent committee of clinicians
made consensus, lifetime DSM-IV diagnoses for each individual using
the results of an expanded psychological autopsy, including structured
interviews with family members and review of medical records, as well
as toxicology and neuropathology reports (J.R. Glausier et al., 2020).
The same approach was used to confirm the absence of lifetime psy-
chiatric and neurologic disorders in the UC individuals. All procedures
were approved by the University of Pittsburgh Committee for Oversight
of Research and Clinical Training Involving Decedents and Institutional
Review Board for Biomedical Research, as well as by the Ethics Com-
mittees of Kanazawa University Graduate School of Medical Sciences
and Nara Medical University.

To reduce biological variance between groups, and to employ a
design that controlled for experimental variance, each individual with
SZ was matched to one UC individual for sex, and as closely as possible
for age (Table 1, Supplementary Table 1). Mean age, body mass index
(BMI), postmortem interval (PMI), brain pH, RNA integrity number
(RIN) and storage time at − 80 ◦C did not differ significantly between the
two groups, nor did race distribution (Table 1).

2.2. Tissue preparation

The right hemisphere of each brain was blocked coronally, imme-
diately frozen and stored at − 80 ◦C. The gray matter tissues were
dissected from each of the four cortical regions (V1, V2, PPC and DLPFC)
as described previously (Hoftman et al., 2018) (Supplementary
Methods, Supplementary Figure 1) and homogenized in TRIzol reagent
(Invitrogen, Carlsbad, CA).

2.3. qPCR procedures

Total RNA was isolated from the homogenate samples and converted
into cDNA as described previously (Tsubomoto et al., 2019) (Supple-
mentary Methods). Real-time amplification of ADCYAP1, BDNF, NPTX2,
and NRN1 mRNAs, as well as three internal control transcripts
[beta-actin (ACTB), glyceraldehyde-3-phosphate (GAPDH) and pepti-
dylprolyl isomerase A (PPIA)] were performed as described previously
(Vandesompele et al., 2002; Tsubomoto et al., 2019) (Supplementary
Methods), using forward and reverse primers designed to amplify frag-
ments of 87 to 127 bp in the regions common to all variants with
amplification efficiency≥ 96% (Supplementary Table 2). The primer set
for BDNF mRNA was designed to avoid the region included in the
non-coding antisense RNA (BDNF-AS).

The expression levels of the target transcripts were determined as
expression ratios to the geometric mean of internal control transcripts as
described previously (Tsubomoto et al. 2019) (Supplementary
Methods). The mean expression levels of internal control transcripts did

Table 1
Summary of demographic and postmortem characteristics of human individuals.

Unaffected Comparison Schizophrenia
Statistics

Measure (n = 20) (n = 20)

Male Female Male Female
Sex 14 6 14 6 (N/A)

White Black White Black
Race 15 5 14 6 χ2 = 0.13; p = 0.72

Mean SD Mean SD
Age (years) 45.4 11.6 44.3 10.4 t1,38 = 0.33; p = 0.74
BMI 31.3 7.2 28.9 7.3 t1,36 = 1.0; p = 0.32
PMI (hours) 15.3 5.8 14.2 6.4 t1,38 = 0.59; p = 0.56
Brain pH 6.6 0.2 6.5 0.3 t1,38 = 2.0; p = 0.05
RIN 8.4 0.5 8.3 0.6 t1,38 = 0.44; p = 0.66
Tissue StorageT

ime (months)
196.5 39.9 197.7 47.3 t1,38 = − 0.08; p = 0.94

N/A, not applicable; BMI, body mass index; PMI, postmortem interval; RIN, RNA integrity number.
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not differ significantly by diagnosis (F1,38 = 1.92, p = 0.174) and the
diagnosis-by-region interaction was not significant (F3,114 = 0.31, p =

0.817). We did detect a significant effect of region (F3,114 = 8.00, p <

0.001), with post hoc comparisons revealing a significant difference
between V1 and DLPFC. However, this difference appears to have a
limited effect on the comparison of target transcript levels between V1
and DLPFC as it is smaller in size (< 2.1 %) relative to the size of
observed differences in target transcripts (all > 13.4 %). Cases with
transcript levels more than 3 SDs from the mean of all individuals in any
region were considered as outliers for that measure and pairs including
such cases were removed from the comparison between UC and SZ
individuals.

2.4. qPCR data analysis

Analyses were performed with R version 4.1.3 (R: The R Project for
Statistical Computing; http://www.r-project.org) using the “lme4”,
“lmerTest”, “tidyverse” and “emmeans” packages. To assess transcript
levels across the four regions, a linear mixed model (LMM) was per-
formed with observations from the four regions in each individual as
repeated measures to account for within-individual correlation among
four regions. To compare transcript levels across the four regions in UC
individuals, the LMM included transcript level as the dependent vari-
able, region as a fixed effect, individual as a random effect, and sex, age,
PMI, brain pH, RIN and tissue storage time as covariates. F-tests were
used to assess the overall effect of region. If region effect was significant,
post hoc pairwise comparisons between regions were performed by
Tukey’s test. To determine if the expression of these transcripts was
altered in SZ across regions, the LMM was performed with transcript
level as the dependent variable, diagnosis, region and diagnosis-by-
region interaction as the fixed effects, individual as a random effect,
and the same set of covariates. F-tests were used to test the diagnosis and
diagnosis-by-region interaction effects. If the diagnosis-by-region
interaction was significant, post hoc pairwise comparisons were per-
formed to assess the diagnosis effect in each region via Tukey’s test. In
each region, the magnitudes of transcript changes in SZ relative to UC
individuals are presented as percentage differences as well as Cohen’s
d effect sizes (Cohen, 1988). Negative Cohen’s d values indicate that
mean transcript levels are lower in SZ relative to UC individuals.

To compare alterations in the activity-regulated transcripts with
previously reported deficits in transcripts from PV and SST neurons (PV,
SST and GAD67 mRNAs) (Tsubomoto et al., 2019) across the regions,
composite scores were computed for three groups of transcripts
(ADCYAP1 and NRN1 mRNAs, BDNF and NPTX2 mRNAs, and PV, SST
and GAD67 mRNAs) as the means of Z-scored expression levels of
transcripts belonging to each group (Supplementary Methods). Tran-
script levels of PV, SST and GAD67 mRNAs were obtained from the
previously published analysis of the same cohort used in this study
(Tsubomoto et al., 2019). In each region, the magnitudes of diagnosis
effect on composite scores are presented as Cohen’s d with 95 % con-
fidence intervals (CI) (Nakagawa and Cuthill, 2007).

The potential effects of certain cooccurring factors, such as the use of
prescription drugs (benzodiazepines and/or anticonvulsants, antide-
pressants and antipsychotics) at time of death (ATOD), tobacco use
ATOD, and suicide as the manner of death, on each target transcript
were tested by the LMM with transcript level as the dependent variable,
cooccurring factor, region and cooccurring factor-by-region interaction
as the fixed effects, individual as a random effect, and sex, age, PMI, RIN,
tissue storage time and brain pH as covariates. For each transcript, p
values were corrected for multiple comparisons for 5 cooccurring factors
using the Benjamini-Hochberg Method with the false discovery rate of 5
%.

All LMM analyses of individual target transcripts were conducted on
log-transformed data and only significant covariates were included in
the final reported results.

2.5. Analysis of RNAseq data from pools of layer 3 pyramidal neurons

We also examined the transcripts of interest in a previously pub-
lished RNAseq data set obtained from pools of 100 individually-
dissected layer 3 pyramidal neurons collected from V1, PPC and
DLPFC of 39 UC individuals (Enwright et al., 2022) (for demographic
information see Enwright et al. 2022). Among these 39 UC individuals,
19 UC individuals were common to the 20 UC individuals analyzed in
the current qPCR analysis. To compare RNAseq data for each transcript
across V1, PPC and DLPFC from UC individuals, the LMM included
transcript level as the dependent variable, region as a fixed effect, in-
dividual as a random effect, and sex, age, PMI, brain pH and RIN as
covariates, with only significant covariates included in the final reported
results. If the region effect was significant, post hoc pairwise compari-
sons between regions were performed by Tukey’s test.

2.6. Analysis of microarray data of isolated pyramidal neurons from
DLPFC of antipsychotic-exposed monkeys

Levels of ADCYAP1, BDNF, NPTX2 and NRN1 mRNAs were obtained
from microarray data of pools of individually captured pyramidal neu-
rons from DLPFC layers 3 and 5 of monkeys chronically exposed to
haloperidol, olanzapine or placebo (n = 6 per group) (Dorph-Petersen
et al., 2004). Levels of the transcripts of interest were computed as
described previously (Datta et al., 2015) and used as the dependent
variable in an analysis of variance model that assessed the effect of
antipsychotic-exposure on each transcript.

3. Results

3.1. Levels of activity-regulated, pyramidal neuron-selective transcripts
across regions of vsWM network in UC individuals

In UC individuals, the levels in total gray matter of pyramidal
neuron-selective, activity-regulated transcripts showed two patterns of
regional differences across the vsWM network (Fig. 1). In the first
pattern, transcript levels for ADCYAP1 (F3,57 = 17.38, p < 0.001), BDNF
(F3,57 = 33.98, p < 0.001) and NPTX2 (F3,57 = 54.73, p < 0.001)
increased from posterior to anterior regions. Specifically, levels of these
three transcripts were lowest in V1, intermediate in V2 and highest in
PPC and DLPFC (Fig. 1A-C). In contrast, NRN1 mRNA (F3,57 = 8.68, p <
0.001) showed the opposite pattern with levels highest in V1 and
decreasing across the vsWM network (Fig. 1D), although the magnitude
of the between-region differences appears smaller than for transcripts in
the first pattern. Among 20 UC individuals, the numbers of individuals
with higher ADCYAP1, BDNF and NPTX2 mRNA levels in DLPFC than in
V1 were 20, 20 and 19, respectively, whereas the number of individuals
with higher NRN1 mRNA levels in V1 than in DLPFC was 16.

We also evaluated the levels of these transcripts in isolated layer 3
pyramidal neurons from V1, PPC and DLPFC of UC individuals using our
previously published RNAseq data (Enwright et al., 2022). The effect of
region was significant or nearly significant for ADCYAP1 (F2,76 = 41.18,
p < 0.001), BDNF (F2,76 = 2.80, p = 0.067), and NPTX2 (F2,76 = 104.62,
p < 0.001) mRNAs (Fig. 1E-G). Similar to the qPCR data of gray matter,
ADCYAP1 and NPTX2 showed posterior-to-anterior increases with levels
of these mRNAs significantly higher in DLPFC than in V1 (Fig. 1E, G).
BDNF mRNA showed a similar trend with mean levels lowest in V1,
intermediate in PPC and highest in DLPFC (Fig. 1F). In contrast to the
qPCR data, NRN1 mRNA levels in layer 3 pyramidal neurons did not
differ across vsWM regions (F2,76 = 0.39, p = 0.678) (Fig. 1H).

3.2. Effect of SZ on activity-regulated, pyramidal neuron-selective
transcripts in regions of vsWM network

For ADCYAP1 mRNA, our mixed model detected a significant effect
of diagnosis (F1,38 = 6.87, p = 0.013), significant effects of region (F3,114

Y. Bian et al.
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Fig. 1. Expression levels of activity-regulated, pyramidal neuron-selective transcripts across the four regions of the cortical visuospatial working memory network in
unaffected comparison (UC) individuals measured in total gray matter by quantitative polymerase chain reaction (qPCR) (A-D) and in layer 3 pyramidal neurons by
RNA sequencing (RNAseq) (E-H). The linear mixed model results are shown at the top left of each panel for each transcript. Within each panel, symbols indicate
individuals and horizontal bars represent group means. For each transcript, regions that do not share the same lower-case letter are significantly different by post hoc
Tukey’s tests with alpha level of 0.05. For qPCR results (A-D), transcript levels of each UC individual are shown by the same symbol across all regions and graphs. For
RNAseq results (E-H), box plots depict the mean, and 25th and 75th percentiles, with whiskers extending to the 95th percentiles of each distribution. V1, primary
visual cortex; V2, association visual cortex; PPC, posterior parietal cortex; DLPFC, dorsolateral prefrontal cortex.
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Fig. 2. Effect of schizophrenia (SZ) on activity-regulated, pyramidal neuron-selective transcripts across the four cortical regions of visuospatial working memory
network. For each panel (A-D), transcript name is at the top left and the linear mixed model results at the top center. In each panel, symbols indicate the percentage
difference between the unaffected comparison (UC) and SZ individual in each pair; symbols correspond to the UC individual plotted in Fig. 1 for a given pair. The
percentage differences in mean levels between SZ and UC individuals are indicated by horizontal bars and shown in parentheses. Asterisks (*) indicate significant
differences between UC and SZ individuals in each region by post hoc Tukey’s tests that were performed when the linear mixed model detected a significant
diagnosis-by-region interaction. V1, primary visual cortex; V2, association visual cortex; PPC, posterior parietal cortex; DLPFC, dorsolateral prefrontal cortex.

Fig. 3. Effect of schizophrenia (SZ) on composite scores obtained for activity-regulated, pyramidal neuron-selective transcripts and for transcripts in PV and SST
neurons in each region of the cortical visuospatial working memory network. In each panel (A-C), bargraphs show the Cohen’s d effect sizes of SZ on transcript
composite scores across the regions for three groups of transcripts, ADCYAP1 and NRN1 mRNAs (A), BDNF and NPTX2 mRNAs (B) and PV, SST and GAD67 mRNAs
(C). Error bars indicate 95 % confidence intervals (CI). V1, primary visual cortex; V2, association visual cortex; PPC, posterior parietal cortex; DLPFC, dorsolateral
prefrontal cortex.

Y. Bian et al.
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= 62.45, p< 0.001) and diagnosis-by-region interaction (F3,114= 9.52, p
< 0.001) (Fig. 2A). Compared with UC individuals, ADCYAP1 mRNA
levels were significantly lower in V1 (Cohen’s d= − 1.21, p< 0.001) and
V2 (Cohen’s d = − 0.99, p = 0.002) but unaltered in PPC and DLPFC of
individuals with SZ. Levels of BDNF mRNA significantly differed by
diagnosis (F1,36 = 15.10, p < 0.001) and by region (F3,114 = 41.43, p <

0.001), but the interaction term was not significant (F3,114 = 0.56, p =

0.645) (Fig. 2B). Compared with UC individuals, BDNF mRNA levels
were lower in V1, V2, PPC and DLPFC (Cohen’s d = − 0.80, − 1.03,
− 0.87 and − 0.60, respectively) in SZ individuals. For NPTX2 mRNA
levels, we detected a significant effect of diagnosis (F1,35 = 6.27, p =

0.017) and a significant effect of region (F3,108 = 93.85, p < 0.001),
without a diagnosis-by-region interaction (F3,108 = 0.30, p = 0.825)
(Fig. 2C). NPTX2 mRNA levels were lower in V1, V2, PPC and DLPFC
(Cohen’s d = − 0.37, − 0.51, − 0.59, and − 0.33, respectively) in in-
dividuals with SZ. Finally, NRN1mRNA levels showed significant effects
of region (F3,108= 11.42, p< 0.001) and diagnosis-by-region interaction
(F3,108 = 3.06, p = 0.031), but the effect of diagnosis was not significant
(F1,34 = 2.40, p = 0.131) (Fig. 2D). NRN1 mRNA levels were signifi-
cantly lower in V1 (Cohen’s d = − 0.91, p = 0.005), but unaltered in the
other regions.

3.3. Comparison with transcript alterations in PV and SST neurons

The findings above reveal two distinct cross-regional patterns of
activity-regulated transcript alterations in SZ: ADCYAP1 and NRN1
mRNAs levels were lower only in the two occipital regions (Fig. 2A and
D), whereas the deficits in BDNF and NPTX2 mRNA levels were com-
parable across all four regions (Fig. 2B and C). Therefore, to assess the
relationship of activity-regulated transcripts with the previously re-
ported transcript alterations in PV and SST neurons in SZ, we computed
composite scores in each region of each individual for ADCYAP1 and
NRN1mRNAs, for BDNF and NPTX2mRNAs and for PV, SST and GAD67
mRNAs using previously published data from the same cohort
(Tsubomoto et al., 2019). The magnitude (Cohen’s d effect size) of the
deficit in the ADCYAP1/NRN1 composite scores in SZ was largest in V1
and decreased from posterior to anterior regions (Fig. 3A). In contrast,
although regional differences in the magnitudes of the disease effect
were much smaller for the BDNF/NPTX2 scores, the magnitudes of
deficits were in the order of PPC>V2>V1>DLPFC (Fig. 3B), the same
regional order observed for the larger deficits in the PV/SST/GAD67
scores (Fig. 3C). Although the data points were limited to the four re-
gions, the effects of SZ on BDNF/NPTX2 scores and PV/SST/GAD67
scores were positively correlated (r = 0.96, p = 0.042) across these re-
gions, whereas the ADCYAP1/NRN1 and PV/SST/GAD67 scores were
not (r = − 0.19, p = 0.890).

3.4. Effects of cooccurring factors on activity-regulated transcripts in SZ
individuals

In the LMM model, none of cooccurring factors, including the use of
prescription drugs (benzodiazepines and/or anticonvulsants, antide-
pressants and antipsychotics) ATOD, tobacco use ATOD or suicide (all p
> 0.073), nor the interaction between each of these factors and regions
(all p > 0.069) exhibited a significant effect on levels of all transcripts in
individuals with SZ (Supplementary Table 3), except for a significant
effect of benzodiazepines/anticonvulsants ATOD on NRN1 mRNA levels
(Supplementary Figure 2). Individuals with SZ who used benzodiaze-
pines/anticonvulsants ATOD had NRN1mRNA levels that were 16–29%
higher across regions compared with those who did not use these drugs
(Supplementary Figure 2).

To further assess the effect of antipsychotics on the four transcripts,
we analyzed microarray data of pooled pyramidal neurons individually
captured from layers 3 and 5 of DLPFC of monkeys chronically exposed
to haloperidol, olanzapine or placebo (Datta et al., 2015). The exposure
to antipsychotics did not have a significant effect on any of the four

transcripts in pyramidal neurons from layer 3 (all F2,15 < 0.59, all p >

0.567) or layer 5 (all F2,15 < 1.14, all p > 0.345).

4. Discussion

In this study, we quantified levels of four neuronal activity-regulated
transcripts that are selectively expressed in pyramidal neurons across
four cortical regions of vsWM network from 20 matched pairs of UC and
SZ individuals. In UC individuals, levels of ADCYAP1, BDNF and NPTX2
mRNAs were lowest in V1 and increased from posterior to anterior re-
gions with the highest levels in the PPC and DLPFC, whereas NRN1
mRNA levels were higher in V1 and V2 than in PPC or DLPFC. Relative
to UC individuals, levels of BDNF and NPTX2 mRNAs were lower in SZ
across all four regions, whereas ADCYAP1 and NRN1 mRNA levels were
lower in V1 and V2, but not in PPC or DLPFC. Across the four regions,
the deficits in BDNF and NPTX2 mRNA levels were similar to the pre-
viously reported deficits in PV, SST and GAD67 mRNA levels in the same
cohort. These findings are consistent with the idea that the activity of
pyramidal neurons that selectively express BDNF and/or NPTX2 mRNAs
is lower in SZ and contribute to alterations in PV and SST neurons across
multiple regions of the cortical vsWM network in SZ.

4.1. Transcript levels in UC individuals

Our qPCR findings revealed that levels of ADCYAP1, BDNF and
NPTX2 mRNAs increased, whereas those of NRN1 mRNAs declined from
posterior visual to anterior association regions of the vsWM network in
UC individuals. As recent single-cell transcriptome analyses of the pri-
mate neocortex revealed that these transcripts are selectively expressed
in different sets of excitatory neuron subtypes including those in layer 3
(Hodge et al., 2019; Ma et al., 2022; Chen et al., 2023), the
cross-regional differences in their levels in total graymatter could reflect
regional differences in the activity and/or abundance of pyramidal
neuron subtypes that selectively express each of these transcripts. The
qPCR result of ADCYAP1, BDNF and NPTX2 mRNAs were replicated in
our RNAseq analysis of isolated layer 3 pyramidal neurons (Enwright
et al., 2022), suggesting that regional differences in the mRNA levels in
total gray matter reflect, at least in part, their expression in layer 3
pyramidal neurons. Interestingly, layer 3 pyramidal neurons exhibit
progressive increases in the size and complexity of dendritic arbors
(Elston and Rosa, 1997; Elston, 2000) and in the number and density of
dendritic spines, the principal sites of excitatory synapses on pyramidal
neurons (Spruston, 2008), from V1 to DLPFC (Elston, 2000; Elston et al.,
2011). Furthermore, in monkeys, the magnitude, frequency and dura-
tion of excitatory synaptic inputs to layer 3 pyramidal neurons were all
greater in DLPFC than in V1 (Amatrudo et al., 2012), indicating greater
amounts and more effective summation of excitatory inputs to these
neurons in DLPFC than in V1. Therefore, the posterior-to-anterior in-
crease in ADCYAP1, BDNF and NPTX2mRNAs might reflect the regional
gradient in the activity of layer 3 pyramidal neurons. Consistent with
this idea, in our RNAseq data of isolated layer 3 pyramidal neurons,
levels of transcripts for oxidative phosphorylation, which reflect
neuronal activity (Wong-Riley, 2012), exhibited higher expression
levels in DLPFC and PPC than in V1 (Enwright et al., 2022).

In contrast, NRN1 mRNA levels were higher in V1 and V2 than in
DLPFC with the levels in PPC intermediate by qPCR. However, the
RNAseq analysis of isolated layer 3 pyramidal neurons did not detect a
significant difference across the regions. The RNAseq data for 19 UC
individuals, which are common to the current qPCR analysis, showed a
trend of difference in NRN1mRNA among the four regions (F2,36 = 2.78,
p= 0.075) with the levels in V1 higher by 2.3 % than in DLPFC, whereas
in the qPCR data for the total gray matter of the same 19 UC individuals
NRN1 mRNA levels differ significantly across regions (F3,54 = 8.21, p <

0.001) with the levels in V1 significantly higher by 12.9 % than those in
DLPFC. It is also possible that the observed difference between V1 and
DLPFC in qPCR data is overrated by the lower mean levels of internal
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control transcripts in V1 relative to DLPFC in UC individuals. However,
this influence appears to be limited as the mean levels of the three
control transcripts were lower by 2.1 % in V1 than in DLPFC, whereas
NRN1 mRNA levels were higher by 13.5 % in V1 than in DLPFC.
Together, these findings suggest that the posterior-to-anterior decline in
NRN1 mRNA levels in total gray matter is not merely an artifact asso-
ciated with the difference in cohorts or the regional difference in the
levels of internal control transcripts. It is possible that the qPCR results
reflect, at least in part, NRN1mRNA expression in non-layer 3 pyramidal
neurons. Interestingly, in a recent single-cell, spatial transcriptome
analysis of the monkey cortex (Chen et al., 2023), NRN1 mRNA was
selectively detected in seven excitatory neuron subtypes that exhibited
gradual decreases in the density from posterior visual to anterior asso-
ciation regions along the hierarchy of visual cortices. Among these
subtypes, six subtypes, which represent the majority in the total den-
sities of the seven subtypes across these regions, were located outside of
layer 3. Therefore, the posterior-to-anterior decline of NRN1 mRNA
levels might reflect the regional gradients of the density of the pyramidal
neuron subtypes located outside of layer 3.

4.2. Alterations in SZ individuals

We have previously demonstrated that levels of BDNF and NPTX2
mRNAs were lower in the DLPFC of SZ individuals (Hashimoto et al.,
2005; Kimoto et al., 2015). In the current study, we detected significant
effects of diagnosis on BDNF and NPTX2 mRNAs, respectively, without a
significant diagnosis-by-region interaction, indicating that these tran-
scripts are similarly lower across the four regions in SZ individuals. As
both BDNF and NPTX2 are synthesized in pyramidal neurons in an
activity-dependent manner (Tsui et al., 1996; Hrvatin et al., 2018;
Esvald et al., 2022), their lower levels in SZ could reflect reduced ac-
tivity of pyramidal neurons, which could contribute to lower levels of
activity-regulated transcripts in PV and SST neurons via excitatory in-
puts from pyramidal neurons. Furthermore, BDNF has been reported to
be necessary for the formation and maintenance of inhibitory synapses
by cortical GABA neurons (Kohara et al., 2007) and was shown to
regulate expression of PV (Huang et al., 1999; Sakata et al., 2009), SST
(Glorioso et al., 2006; Mellios et al., 2009) and GAD67 (Matsumoto
et al., 2006; Hanno-Iijima et al., 2015). NPTX2 is released from pyra-
midal neurons, accumulates at excitatory synapses on PV neurons and
enhances excitatory inputs to these neurons by recruiting AMPA re-
ceptors to synaptic surface (Chang et al., 2010). Therefore, lower levels
of BDNF and NPTX2 mRNAs could represent, in addition to reduced
excitatory inputs to PV and SST neurons, a direct molecular mechanism
that could contribute to the lower transcript levels in PV and SST neu-
rons across cortical regions.

In contrast to BDNF and NPTX2 mRNAs, levels of ADCYAP1 and
NRN1 mRNAs were lower only in posterior visual regions. ADCYAP1
and NRN1 mRNAs are selectively expressed in pyramidal neurons of
human cortex (Hodge et al., 2019; Ma et al., 2022) and upregulated with
enhanced activity in pyramidal neurons in rodent cortex (Hrvatin et al.,
2018). As recent single-nucleus transcriptome analyses revealed multi-
ple pyramidal neuron subtypes in the primate neocortex (Hodge et al.,
2019; Ma et al., 2022; Chen et al., 2023), the region-specific deficits in
ADCYAP1 and NRN1 mRNAs could reflect that pyramidal neuron sub-
types that selectively express these transcripts are hypoactive primarily
in posterior regions in SZ individuals. Alternative, though not mutually
exclusive, is the possibility that activity-dependent regulation of these
transcripts in pyramidal neurons differs across cortical regions so that
the effect of activity has greater impacts on these transcripts in posterior
than in anterior regions. Activity-regulated transcription was shown to
occur through the interaction with epigenetic mechanisms, such as DNA
methylation and chromatin modifications (Yap and Greenberg, 2018;
Pumo et al., 2022). Among different cell types in human neocortex,
pyramidal neurons exhibited the greatest cross-regional variability in
chromatin accessibility (Hauberg et al., 2020), and in monkeys, most

pyramidal neuron subtypes that are defined by their layer localization
and projection targets showed different chromatin accessibility patterns,
especially in the gene regulatory regions, across different neocortical
regions (Lei et al., 2022). Therefore, the lower levels of ADCYAP1 and
NRN1 mRNAs in posterior visual, but not anterior association, regions
might reflect regional differences in epigenetic regulation that could
contribute to region-selective influence of pyramidal neuron activity on
these transcripts.

The cross-regional patterns of deficits in SZ were different between
BDNF and NPTX2 mRNAs and ADCYAP1 and NRN1 mRNAs and the
pattern of transcript alterations in PV and SST neurons was similar to
that of BDNF and NPTX2 mRNAs. In a recent single-cell, spatial tran-
scriptome analysis of the monkey cortex (Chen et al., 2023), 59 out of
122 cortical excitatory neuron subtypes were found to express at least
one of the four activity-regulated transcripts as their selective markers.
Among them, 25 subtypes selectively express ADCYAP1 and/or NRN1
mRNAs without selective expression of BDNF or NPTX2 mRNAs and 19
subtypes selectively express BDNF and/or NPTX2 mRNAs without se-
lective expression of ADCYAP1 or NRN1 mRNAs. These findings suggest
that pyramidal neuron subtypes that selectively express BDNF and/or
NPTX2 mRNAs contribute to alterations of PV and SST neurons through
their lower activity and reduced synthesis of BDNF and NPTX2 in each
region of vs WM network.

4.3. Evidence supporting lower pyramidal neuron activity in SZ

In SZ, the density of dendritic spines was found to be lower across
multiple cortical regions (Glausier and Lewis, 2013). Given that spines
are the site of most excitatory inputs to pyramidal neuron, these findings
have been interpreted as evidence of lower excitatory drive to, and
hence lower activity of, pyramidal neurons. This interpretation is sup-
ported by findings that markers of energy production are also lower in
pyramidal neurons in cortical regions of the vsWM network in SZ (Arion
et al., 2015; Glausier et al., 2020; Kimoto et al., 2022). Furthermore,
many SZ risk loci identified by large-scale genetic studies implicate
genes involved in synaptic glutamate signaling or spine formation and
maintenance (Singh et al., 2022; Trubetskoy et al., 2022). Together,
these findings converge on the idea that fewer excitatory inputs to
cortical pyramidal neurons contribute to lower activity of these neurons
in SZ. Previous functional imaging studies have shown lower activity of
DLPFC and PPC during WM tasks (Minzenberg et al., 2009; Barch and
Ceaser, 2012). As pyramidal neurons are excitatory and represent the
majority of neurons across cortical regions (Hendry et al., 1987; Jorstad
et al., 2023), these findings are also consistent with lower activity of
pyramidal neurons in the vsWM network in SZ.

4.4. Effects of cooccurring factors

Several lines of evidence suggest that altered levels of activity-
regulated transcripts in pyramidal neurons across the regions of vsWM
network are unlikely to be the consequences of other factors frequently
associated with SZ. First, our LMM model did not reveal a significant
effect of cooccurring factors, such as prescription drug use ATOD
(including benzodiazepines/anticonvulsants, antidepressants and anti-
psychotics), tobacco use ATOD or death by suicide, or a significant
coocurring factor-by-region interaction for ADCYAP1, BDNF and NPTX2
mRNAs in SZ individuals (Supplementary Table 3). For NRN1, only use
of benzodiazepines/anticonvulsants ATOD had a significant effect
without a significant interaction with region. However, NRN1 mRNA
levels were higher in SZ individuals treated with benzodiazepines/an-
ticonvulsants ATOD than in those who were not treated with these drugs
across the regions (Supplementary Figure 2). Therefore, benzodiaze-
pines/anticonvulsants use ATOD did not explain the lower NRN1 mRNA
levels in SZ compared to UC individuals. Second, our previous studies in
the DLPFC of individuals with SZ demonstrated that BDNF mRNA levels
did not differ as a function of antidepressant or antipsychotic use or of
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death by suicide (Hashimoto et al., 2005), and NPTX2mRNA levels were
not affected by use of benzodiazepines/anticonvulsants, antidepressants
or antipsychotics ATOD, tobacco use ATOD, or death by suicide (Kimoto
et al., 2015). Third, neither BDNF nor NPTX2 mRNA levels were altered
in the total gray matter of DLPFC of monkeys chronically exposed to
antipsychotics (Hashimoto et al., 2005; Kimoto et al., 2015). Fourth, in
the same antipsychotic-exposed monkeys, none of the four transcripts
exhibited a significantly altered levels in pooled pyramidal neurons
individually captured from layers 3 or 5 of the DLPFC. Finally, the
comparable magnitudes of alterations of BDNF and NPTX2 mRNAs as
well as posterior region-dominant alterations of ADCYAP1 and NRN1
mRNAs argue against the potential influence of antipsychotics because
any effects of antipsychotics would likely to show a posterior-to-anterior
increase that reflect greater densities of dopamine terminals (Lewis
et al., 1987; Gaspar et al., 1989) and receptors (Lidow et al., 1989) in
anterior than in posterior regions.

4.5. Conclusions

Our analyses of four activity-regulated transcripts that are selectively
expressed in pyramidal neurons across the four cortical regions of vsWM
network revealed two opposite cross-regional expression patterns in UC
individuals, which appear to reflect regional differences in activity and/
or relative abundance of pyramidal neuron subtypes selectively
expressing each transcript. In SZ individuals, levels of these transcripts
were lower across the four regions, indicating lower activity of pyra-
midal neurons. The similar alterations of BDNF and NPTX2 mRNAs
across the four regions could reflect reduced activity of pyramidal
neurons selectively expressing these transcripts as well as dysregulation
of GABA neuron phenotypes, both of which could contribute to the
regionally conserved alterations of PV and SST neurons in the vsWM
network in SZ. Lower levels of ADCYAP1 and NRN1 mRNAs limited to
occipital regions might suggest regional differences in the effect of SZ on
the activity of pyramidal neurons selectively expressing these transcripts
and/or the transcriptional regulation of these transcripts by neuronal
activity.
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